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Three-dimensional folding of an embedded viscous layer in pure shear 
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Abs t rac t - -A thick-plate analysis is carried out to first-order in interface slope for three-dimensional folding of a 
single linear viscous layer of thickness H and viscosity r /embedded in a uniform viscous medium with viscosity q~. 
Layer and medium are subject to a basic state of homogeneous pure shear with principal directions of strain-rate x 
and y lying in the plane of the layer. The solution is explicitly carried out for a fold perturbation in interface shape 
that is symmetric with respect to the principal strain-rate axes, A cos (Ix) cos (my), but it is shown to apply to an 
arbitrary perturbation in the x,y plane. The growth rate of the perturbation is found to be 

dA/dt= -~zzA + (1 - R){(1 - R 2) - [(1 + RZ)(e k - e k) + 2R(e k + e-k)]/2k}-l  [(12122)~xx + (rn2/A2)~yy_ ~zz]A, 

where R = rh/q, k = 2H, 22 = l 2 + m 2, and ~xx, ~yy, and ~zz are the principal strain-rates of the basic state. The 
wavenumber of the most rapidly growing perturbation, 2j, is the same as that obtained for a cylindrical 
perturbation (m = 0) in a basic state of plane strain (~yy = 0). For maximum rate of shortening parallel to x, the 
cylindrical fold form with axis normal to x, m/l = 0, grows most rapidly for any ratio of ~,y/exx < 1. If gyy = ~?xx, all 
fold forms grow at the same rate and in particular, an 'egg-carton' fold form is not pref'erentially amplified. The 
velocity field for the perturbing flow consists of a poloidal field, which solely determines the growth of the fold 
form, and a toroidal field, with non-zero component  of vorticity about the axis normal to the layer. The latter is 
required to satisfy both of the two independent shear traction continuity conditions at interfaces. There is no 
coupling between the two fields. Three-dimensional fold forms in the Appalachian Plateau province in western 
Pennsylvania are described. 

INTRODUCTION 

THEORETICAL modeling of folds and other tectonic struc- 
tures has been carried out chiefly for two-dimensional 
cylindrical structures forming in plane strain. Many folds 
can be approximated as having cylindrical form, but few 
are that close to this idealization. Even though indi- 
vidual folds may be approximately cylindrical over much 
of their length, arrays of folds are fully three- 
dimensional. Moreover, in many cases, deviations from 
cylindricity are systematic. For example, the folds may 
occur in echelon arrays, or they may have characteristic 
aspect ratios. Hence, potential information in the obser- 
vations cannot be taken advantage of in the absence of a 
fully three-dimensional theory. We also have little basis 
for understanding how cylindrical structures arise in the 
first place. 

A thin-plate theory for three-dimensional folding at 
low limb-dip has been used by Ghosh (1970) and by 
Johnson & Page (1976). This treatment is restricted to 
structures whose wavelengths are large compared to the 
layer thickness, and to layers which develop a pure fold 
form in which both surfaces have the same amplitude. 
However, many single-layer (Sherwin & Chapple 1968, 
Hudleston & Holst 1984) and large-scale folds above 
detachment surfaces (Sherwin 1972, Wiltschko & Chap- 
pie 1977) do not have large wavelength to thickness 
ratios. Also, in many structures of interest, such as 
pinch-and-swell structures (Smith 1975, 1977) and mul- 
lions (Smith 1975, 1977, Fletcher 1982), the layers have 
an important pinch-and-swell component. 

As a first step in the study of the initiation and low 

limb-dip growth of structures arising from flow insta- 
bility in a layered sequence, including buckling and 
necking, we consider here the folding of a single isotro- 
pic linear viscous layer embedded in a uniform viscous 
medium. A three-dimensional thick-plate solution is 
developed along the lines of the two-dimensional analy- 
sis (Smith 1975, Fletcher 1977). The present analysis is 
for a basic state of irrotational pure shear with principal 
axes of the strain-rate parallel and normal to the plane of 
the layer. This excludes mean layer-parallel shear (Trea- 
gus 1973), but the results can be extended to the case of a 
mean shear in the plane of the layer. 

To motivate the subsequent theoretical treatment, an 
example of a natural fold array is briefly described. 

A LOW LIMB-DIP FOLD ARRAY IN THE 
APPALACHIAN PLATEAU PROVINCE 

Since the present study is restricted to the analysis of 
fold growth at low limb-dip, an example of natural folds 
is taken from the low limb-dip folds of the Appalachian 
Plateau province in western Pennsylvania. The anticli- 
nal axes of folds in this region are shown in Fig. l(a) 
(from Wiltschko & Chapple 1977). 

Structural contours on the top of the Oriskany Sand- 
stone (Devonian) for a portion of this region are shown 
in Fig. l(b) (from Cate 1964). Only a few structural 
contours are shown. The -6500' contour shows the 
nearly cylindrical anticlines in the center of the map 
area, the Chestnut Ridge Anticline and the Laurel Hill 
Anticline to its west. The much higher amplitude Deer 
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tours would  be required to clearly delineate the folds 
there.  

Quali tat ive features of  the three-dimensional  fold 
form include culminat ions and saddles along the t rend of  
an anticline and depressions and saddles along the t rend 
of  a syncline. Folds may terminate ,  as indicated in the 
map  of  anticlinal axes (Fig. la ) ,  but  the sparseness of  
contours  makes  this difficult to  see in Fig. l (b) .  The  
trends of  the folds show subtle variations,  and there is 
some suggestion of  an echelon a r rangement  of  some 
folds. A striking, if subdued,  feature is an E- t rending 
series of  synclinal depressions and at least one  promi-  
nent  anticlinal saddle that  crosses the central  par t  of  the 
area. This is indicated by the arrows in Fig. l (b) .  
Indicat ions of  this secondary  structural  t rend are seen to 
the south and north.  

Most  of  the systematic features seen in the con tour  
map  can be replicated by adding two periodic com- 
ponents  in a representa t ion of  the height of  a folded 
surface above a mean  horizontal  datum.  For  example,  
consider  the surface 

~(x,y) = A cos (Ix) + B cos ( l 'x ' ) ,  ( la)  

where  the x '  axis makes  an angle fl with the x axis, and,  
consequent ly ,  

x '  = x c o s f l  + y s in f l .  ( lb )  

A surface of  this form plot ted in Fig. 2 represents  the 
sum of  a sinusoidal wave with ampli tude A = 1 (in 
arbi t rary units) and a N - S  axis, plus an obliquely- 
or iented  sinusoidal wave with the same wavelength and 
ampli tude B = 0.25, whose axis t rends N30°E 
(/3 = -30° ) .  This surface shows anticlinal culminat ions 
or  synclinal depressions and saddles along the fold axes. 
It also shows fluctuations in the axial t rends which 
cor respond  to an echelon a r rangement  of  successive 
anticlinal culminat ions or  synclinal depressions.  Finally, 

Fig. 1. (a) Anticlinal axes of folds in the Appalachian Plateau pro- 
vince in western Pennsylvania (after Wiltschko & Chapple 1977). The 
hachured line is the structural front between the Valley-and-Ridge 
province and the Plateau province. (b) Structural contours on the top 
of the Oriskany Sandstone in the area of (a) outlined by a solid line 
(after Cate 1962). The hachured regions lie at or above -6500'; the 
filled regions lie at or below -7500'; the -7000' contour within the 
unshaded regions is approximately at the mean level of the horizon and 

outlines both anticlines and synclines. 

Park Anticl ine,  the eas te rnmost  Plateau structure,  lies 
at the eastern edge of  the map,  and is only indicated by 
the - 6 5 0 0 '  con tour  on its western flank. The  - 7 0 0 0 '  
con tour  is close, but  somewhat  higher  than the mean  
level of  the hor izon in this area. This con tour  outlines 
both  synclines and anticlines. The  - 7 5 0 0 '  con tour  de- 
fines the t roughs of  the synclines. The  max imum elev- 
at ion of  the surface along the crests of  the two central  
anticlines is about  - 5 0 0 0 ' ,  and the greatest  depths in the 
synclines are at about  - 8 5 0 0 ' ,  but  these higher  and 
lower  contours  are not  shown.  To the nor thwest ,  the 
mean  level of  the hor izon rises, so that  addit ional  con- 

! 
L y  

Fig. 2. Contours of height above a mean planar surface for the form 
given in equation (1). The amplitude is arbitrary; solid lines are 
positive and dashed lines are negative relative to the mean level of the 
surface. L x and L~. are the fold wavelengths in thc x and y directions, 

respectivcly. 
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the synclinal minima and anticlinal saddles, and the 
anticlinal maxima and synclinal saddles, line up along 
the N30°E trend. The pattern therefore duplicates, in a 
sharper, more idealized way, the qualitative features 
seen in the natural fold array from the Appalachian 
Plateau province. 

In interpreting the natural fold pattern shown in Fig. 
l(b),  it might be supposed that the initial irregularity 
selectively amplified in the low limb-dip phase of folding 
had a pronounced and possibly regular E - W  structure. 
This pre-existing structure might have been the result of 
a prior episode of shortening with a more northeasterly 
orientation. (No other evidence for such a sequence of 
events is known to the author.) The evolving fold form 
can be idealized by that given in equation (la),  and the 
evolution of such a form in E - W  shortening can then be 
considered. For example, will the shortening cause 
further significant amplification of the secondary com- 
ponent,  thereby insuring its preservation in the final 
structure? 

ANALYSIS OF THICK-PLATE FOLDING IN 
T H R E E  D I M E N S I O N S  A T  L O W  L I M B - D I P  

Form o f  perturbed surface 

Let the form of the upper surface of a layer of 
thickness 2h be expressed as the height above the central 
plane of the layer. Then the surface form (1) can be 
expanded in the principal co-ordinates x and y as 

~(x,y) = h + A cos (Ix) 

+ B cos (/' cos fix) cos (l' sin fly) 

- B sin (l' cos fix) sin (l' sin fly). (2) 

We seek a solution for the perturbing flow associated 
with a shape perturbation of this type that is accurate to 
first-order in the local slope of the surface. The three 
components describing the shape perturbation in (2) are 
orthogonal. Therefore, they give rise to linearly inde- 
pendent perturbing flows, which evolve independently 
of each other. The solution for the first component in the 
shape perturbation may be obtained from the two- 
dimensional theory, with attention to the possible non- 
zero value of ~yy. Given a solution for the second 
component, the solution for the third component is 
obtained by applying appropriate phase shifts in x and y. 
It suffices then, to obtain a solution for a surface of the 
form 

~(x,y) -- h + A cos (lx) cos (my).  (3) 

The first component then corresponds to the case m -- 0. 

Perturbing f low 

The method of analysis used here follows, in its 
general approach, that used by Smith (1975) and 
Fletcher (1977) for the two-dimensional problem. 

A layer of thickness H = 2h and viscosity r/is embed- 

ded in a medium with viscosity/71. Both are subject to a 
basic state of uniform pure shear with principal strain- 
rates exx, gyy and ezz. The  principal axes x and y lie in the 
plane of the layer, and z lies normal to it. The non-zero 
stresses associated with the basic state are, in the layer, 

6xx - 6zz = 4r/(~xx - ~zz) 

(Iyy --  Ozz = 4rl (#yy --  gzz)  ( 4 a )  

6xx - 6yy = 4rl(~xx - ~yy) 

and in the overlying medium, 

0(~ 1) - 6z~ = 4rh(exx - gz_.) 

6(1)yy - -  O'zz = 4~l('~yy --  F'zz) (4b) 

6(12 --  ~y(ly) = 4r] l ( t xx  -- ~yy) ,  

where Oxx, 8yy and 8~ are the components of the stress, 
and the superscript or subscript 1 refers to the upper 
medium. The stresses are the same in the lower medium, 
denoted by index 2, since r/2 = r/1. 

If the layer surfaces are perfectly plane, the basic state 
of flow exactly satisfies the boundary conditions on the 
continuity of surface tractions and velocity components. 

We now perturb the shape of the layer to a pure fold 
form, with the upper surface given by (3) and the lower 
surface by 

~*(x,y) -- - h  + A cos (lx) cos (my).  (5) 

The amplitude of the fold perturbation is A, and its 
wavelengths in the x and y directions are L x = 2~/1 and 
Ly = 2Jr/m. The perturbation given by equations (3) and 
(5) has its symmetry axes coincident with the principal 
axes of the strain-rate in the plane of the layer. Height 
contours for the fold form are shown in Fig. 3 for the case 
L x / L y  = 0 .5 .  

The basic state will no longer satisfy all the boundary 
conditions on the surfaces ~ and ~*, and it is necessary to 
introduce a perturbing flow with velocity components fi, 

Lx -I 
I 1 | |  f i l l  
I | 1 %  I I I  I 
t t l "  i n "  

-.-5, '"" f?j; 
Ly I I 

' " '  I t t  I I I I  
- - ' I ' I  I \ ~ .  1% ' 
• - , I  I , ,  - -  

,;? .. ,,t,, 
I I  # ~ 1  l i  
I I I  I I l l  I I  I 
! I l l  t l ! ~  

Fig. 3. Contours of height relative to the mean surface level for the 
three-dimensional fold form treated here; the amplitude is given in 
arbitrary units; solid lines are positive and dashed lines are negative 

relative to the mean level of the surface. 
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and rb, and stress components Oxx, 6yy, 0=, Oyz, O~x and 

07. 
In general, there will be six independent boundary 

conditions at each interface. Three of these express the 
continuity of the components of stress normal to and 
tangent to the interface. In the present case, a welded 
interface is assumed, and the other three boundary 
conditions express the continuity of the three com- 
ponents of velocity. Because of the symmetry of the 
present fold configuration, only the boundary conditions 
at the upper surface need be considered, and there will 
be a corresponding simplification in the general form of 
the solution. 

The basic-state velocity is already continuous at the 
interface, so that the components of the perturbing 
velocity are required to be continuous. To take advan- 
tage of symmetry, the co-ordinate origin for the flow in 
the layer is taken at its mid-plane, It is more convenient 
to take the co-ordinate origin for the flow in the upper 
medium at the mean level of the upper interface. To 
first-order in the maximum slope (Fletcher 1977) the 
velocity boundary conditions then reduce to 

~(x,y ,h)  ~- ~(1)(x,y,O) 

f ,(x,y,h) = f(l)(x,y,0) (6) 

¢v(x,y,h) ~ ¢v(1)(x,y,O). 

Let s, t and n denote three axes locally tangent and 
normal to the interface (Fig. 4). The stress boundary 
conditions at the upper surface are then 

Crnn(X,y,~ ) = (r(~)(x,y,~) 

Cr, s(X,y,¢ ) = a(nl~)(x,y,¢) (7) 

am(x,y,~ ) = e(n~)(x,y,~). 

The axes n and s are chosen to lie in a vertical plane, 
containing the z-axis, so that the remaining axis t is 
horizontal. Unit vectors in the directions of s, t and n are 
then, to first-order in the maximum slope ~.A given by 

s ~-- T-1[t2T, - h T ,  s3T ] 

t ~  T - I [ t IT ,  t2T , O] (8a) 

n ~-- [-aUOx, -aUay, 1], 

Z 

y 

element 

c o n t o u r s  

~ X  

Fig. 4. Local  co -o rd ina tes  s, t and  n,  whe re  s and  t are  t angen t  to  the 
in ter face ,  and  n is no rma l  to  it. 

where 

f iT  = - m  cos (Ix) sin (my)  

t2T = l sin (Ix) cos (my)  

s3T  = - [ m  2 c o s  2 (Ix) sin 2 (my)  
+ l 2 sin 2 (Ix) cos 2 (my)]A 

and 

T = [m 2 cos 2 (Ix) sin 2 (my)  + l 2 sin 2 (Ix) cos 2 (my)] 1/2. 
(8b) 

Since the components of these vectors are the direction 
cosines between the axes s, t and n and the axes x, y and 
z, the tensor transformation carried out to first-order in 
the slope and taking into account the non-vanishing 
basic-state stresses yields 

(ms ~ ( t z T ) O x z -  (q T ) O y z -  t2T(O~/aX)Oxx 

+t  1T(O~/Oy)Oyy - s3T(rzz 

Ont -~ (q T)Oxz + (t2T)Oyz - tl T(O~/OX)Oxx (9) 

-t2T(O~/Oy)Oyy 

Onn --~ Ozz. 

The expressions for o ~  ) . . . .  are obtained by adding 
superscripts to all stress components in (9). Note that 
(r(zlz) = Ozz. 

When the expressions (9) are substituted into the 
continuity conditions (7), it is found that the first two 
conditions can be reduced to the two much simpler 
conditions 

Oxz(X,y,h ) - t~(1)(x,y,O) = 4r/(1 - R)gxxO~/Ox 
(10a) 

Oyz(X,y,h ) - @l)(x,y,O) = 4r/(1 - R)~xxO~/Oy, 

where 

O~x - O(x a) = 4(q - rh)~x~ and (Tyy - -  O(yly ) = 4 ( r / -  ?] l )Eyy  

have been used, and R = t/1#1. The third condition in (7) 
yields 

O~z(x,y,h) - O~)(x,y,O) = 0. (JOb) 

The solution accordingly requires the determination of 
the form of the perturbing flow which satisfies the six 
boundary conditions (6) and (10). 

The separable form of the perturbing velocity com- 
ponents for the two-dimensional plane flow problem is 

fi = - ( 1 / l ) d W / d z  sin (Ix) 

9 = 0 (11) 

cv = W(z)  cos (Ix). 

These satisfy the condition of incompressibility 

Ou/Ox + Ov/Oy + Ow/Oz = 0. (12) 

The form (11) provides a solution for the special case of 
an interface of the form (3) that is cylindrical (m = 0). 
The extension of this solution to the three-dimensional 
case is accomplished (Bisshop 1960, Biot 1966) by writ- 
ing 
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El = (l[,~2)dWldz(Ot~/Ox) 

= (m/22)dWIdz(O~lOy) (13) 

¢v = W(z;2)@(x,y), 

where ~2 = 12 + m 2, and do(x,y) is a harmonic function 

oz~/ox 2 + 02~/Oy 2 = - 2 2 ~ .  (14) 

For the interface shape (3), the appropriate choice of 
harmonic function is 

= cos (Ix) cos (my). (15) 

Substitution of (13), with (14) into the equations 

~/V2u = Op/Ox 
qV2v = Op/Oy (16) 

ovZw -~- Op/Oz, 

where p is the pressure, yields after a standard develop- 
ment 

W = [A + B(2z - 1)]e az - [C + D(2z + 1)]e -az (17) 

where A, B, C and D are arbitrary constants. The 
velocity components  are then 

ti = - ( / /2 ){[A + B(2z)]e ~z 

+ [C + D(2z)]e -a~} sin (Ix) cos (my) 

= -(m/; t ){[A + B(2z)]e 't~ (18a) 

+ [C + D(2z)]e -z~} cos (Ix) sin (my) 

= {[A + B(2z - 1)]e xz 

- [C + D(2z + 1)]e -x~} cos (lx) cos (my). 

The stress components are 

Ox~ = -2r#2{{(lZ/;tz){[A + B(;tz)l d~ 

+ [C + D(2z)le -z~} 

+ (Be ~z - De-X~)}} cos (lx) cos (my) 

0yy = -2qit{{(m2/22){[A + B(2z)]e zz 

+ [C + D(itz)]e -z~} 

+ (Be ~ - De-X~)}} cos (Ix) cos (my) 

O~z = 2~/2{[A + B(2z - 1)]e az (18b) 

+ [C + D(Zz + 1)]e -~z} cos (Ix) cos (my) 

O~ = -2rl(lm/2){[A + S(2z)]e x~ 

- [C + D(2z)]e -xz} sin (lx) sin (my) 

Oxz = -2q /{ [A  + B(2z)]e zz 

- [C + D(Xz)]e -~z} sin (Ix) cos (my) 

Oy~ = -2r /m{[A + B(2z)]e az 

- [C + D(Xz)]e -~z} cos (lx) sin (my). 

Expressions for the velocity and stress components in 
the upper medium may be obtained by affixing the 
subscript 1 to the coefficients and to the viscosity in (18a) 
and (18b). Since the flow must vanish in the upper 
medium as z ~ oo, A 1 ~- BI = 0. For  the pure fold form 
given by (3) and (5), the symmetry of the flow within the 

layer requires that ff(x,y, - z )  = ¢v(x,y,z), which implies 
that 

C = - A  
(19) 

D = B .  

Thus, taking these conditions into account, only the four 
arbitrary coefficients A, B, C1 and Da are available to 
satisfy the six boundary conditions at the upper inter- 
face. It may be verified that the boundary conditions can 
only be satisfied in the special c a s e  ~yy  = ~xx and m = l. 
To obtain a solution for the general case, an indepen- 
dent solution supplying two additional arbitrary con- 
stants for each medium is therefore required. 

It may be noted that the velocity field (13) has the 
special property that the z component  of the vorticity 
vanishes, a G = 1/2(Ov/Ox - Ou/Oy) = 0. A solution of the 
form 

fi = OW/Oy 
0 = -O~/Ox (20) 

l i , = 0  

satisfies the condition of incompressibility (12) and gives 
a non-zero value of w~. It is required here that ~ also be 
separable in its z-dependence and x,y-dependence.  Sub- 
stitution of (20) into (16) yields 

= (Me xz + Ne -z~) sin (lx) sin (my), (21) 

where M and N are arbitrary constants. The form of the 
x,y-dependence of • for a perturbation of the form (3) 
has been deduced from symmetry arguments. The gen- 
eral expressions for the non-zero velocity and stress 
components are 

fi = m(Me ~ + Ne -a~) sin (Ix) cos (my) (22a) 

= - / ( M e  ~ + N e - a 0  cos (lx) sin (my) 

and 

Oxx = 2r/Im(Me xz + Ne -xz) cos (Ix) cos (my) 
6yy = -2film(Me ;~z + Ne -az) cos (Ix) cos (my) 

O~z = 0 (22b) 

Oxy = 2r/(/2 - mZ)(Me '~ + Ne -a~) sin (lx) sin (my) 

Oxz = 2r/;tm(Me xz - Ne -az) cos (lx) cos (my) 
Oyz = -2r/;t/(Me xz - Ne -az) cos (lx) cos (my). 

From (22a), the z component  of the vorticity in the layer 
is 

(5~ = 22(Me az + Ne -x~) sin (lx) sin (my). (23) 

By symmetry, to z must also be an even function of z for 
the fold configuration studied, and hence, 

N = M. (24) 

The vanishing of the perturbing flow in the upper me- 
dium as z--~ ~ requires that 

M1 = 0. (25) 

SG 13-I-F 
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The full expressions for the velocity and stress com- 
ponents in the layer are therefore obtained by adding 
(22a) to (18a) and (22b) to (18b), respectively, and then 
applying the restrictions (19) and (24). The full ex- 
pressions for the upper medium are similarly obtained. 
The restrictions reduce the arbitary constants in these 
solutions to six: A, B, M, C1, D1 and N1. Application of 
the six boundary conditions (6) and (10) then yield 

- ( l / 2 ) [ A ( e  ah - e-ah) + a(gh)(e  xh + e-'~h)] 

+ mM(e 2h - e -~.h) = -(I/~)C 1 + mN a 

_(m/2)[A(eah  _ -Zh) + B(~.h)(e,th + e-ah)] 

-- /M(e ~h - e -~h) = - (m/2)Cl  - / N 1  

m(e "~h + e -2h) + B[(~.h)(e 'th - e-,th) _ (e ,th + e-'~h)] 

= - ( C 1  + D1) (26) 
A(e ,th _ e-,th) + B[2h(e '!h + e -'lh) 

--  ( e  ah --  e - a h ) ]  - -  R ( C 1  + D 1 )  = 0 

m(e 'th + e -~h) + B,~h(e 2h - e-2h) + R C  1 

= ( 1  - + (m2/ 2) yy - 

M(e ;~h + e -zh) + RN1 = -2(1m/23)(1 - R)@xx - gyy)A. 

The first pair in (26) may be re-arranged to give 

A(e xh - e -xh) + B0.h)(e ah + e -xh) = -C1 (27) 

M(e 2h _ e -2h) = N 1 . 

The relations (26) determine the six arbitrary con- 
stants A, B, C1, D1, M and N 1. Taking (27) into account, 
it may be seen that the first four constants are indepen- 
dently determined from four of the relations, and the 
remaining two constants, M and N1, are determined 
from the remaining two relations. Thus, to the present 
order of approximation, the two flows are neither 
coupled in the governing equations nor the boundary 
conditions. 

D I S C U S S I O N  

Generality o f  the solution 

The two velocity fields (18a) and (22a) may be termed 
the poloidal flow and the toroidal flow, respectively, 
because of their properties referred to the special co- 
ordinate direction z normal to layering. The z com- 
ponent of the vorticity, wz, vanishes for the poloidal 
field. The toroidal flow has non-vanishing a)~, and if o) z 
does vanish, the toroidal field vanishes as well. For a 
layered configuration of isotropic, linear viscous fluids, 
the poloidal and toroidal flows are neither coupled 
through the governing equations nor through the bound- 
ary conditions. 

The general form of the solution given here may be 
applied to solve all problems involving layers of isotropic 
viscous fluid. In the case of density instability alone, the 
toroidal flow vanishes, and the velocity field is purely 
poloidal (Biot 1966). 

Growth rate o f  a three-dimensional fo ld  perturbation 

The rate of growth of the amplitude is given, to the 
present order of approximation, by 

dA/d t  ~ ezzA + #(0,0,h). (28) 

Substitution from (18a), using (19) and the values of the 
constants A and B obtained from the relations (26) 
yields 

dA/d t  ~- gzz A - (q/2)[12/22)gxx + (m2/22)~yy - gzzlA, 
(29) 

where 

q = -2(1  - R){(1 - g 2) - [(1 + gE)(e k -  e -k) 

+ 2R(e k + e-k)] /2k}  -x 

and k = 2H. For k << 1, q has the approximate form 
obtained from the thin-plate analysis (Ghosh 1970, 
Johnson & Page 1976) 

q = 12/(k 2 + R/k) .  (30) 

Hence, with the exception of the thick-plate expression 
for q, which has been already obtained in Fletcher 
(1977), the relation (29) for the growth rate of a three- 
dimensional perturbation is identical to that obtained by 
Ghosh (1970) and Johnson & Page (1976). 

The dominant wavenumber ka, which maximizes q in 
(29), is the same as that determined for the case of a 
cylindrical perturbation in plane strain. Here,  however, 
the growth rate depends also on the fold aspect ratio 
Lx/Ly -- m/l,  through the quantity in square brackets in 
(29). Let shortening take place parallel to x, so that 
exx < 0, and if shortening takes place also in the y 
direction, let gxx -< Eyy. The function 

E = -[(12i22)gxx + (mei2Z)fyy -  z:l/Ig xl 
= (/2/)].2 -t- 1) 4- (m2/,~. 2 d- 1)gyyi~xx (31) 

is then a measure of the dependence of the folding rate 
on the fold aspect aspect ratio; larger E means a larger 
folding rate. The strain rate ratio gyy/f~x -< 1 is positive if 
shortening takes place in the y direction and gyy < 0, or 
negative if extension takes place parallel to y. By inspec- 
tion, recalling that 22 = l 2 + m 2, it can be seen that E is 
maximized for any allowable ratio ~yy/gxx < 1 by the 
choice m = 0, or for a cylindrical fold form with axis 
normal to the x direction of maximum shortening rate. 
For the special c a s e  Eyy/~xx = 1 ,  the growth rate is 
independent of the fold form. 

This result is not consistent with one reported by 
Johnson & Page (1976) for the buckling of a thin elastic 
plate. With suitable re-interpretation of quantities, the 
formal solution to the elastic problem should agree with 
the solution for the folding of a viscous layer in a viscous 
medium. Johnson & Page (1976) obtain a result that is 
equivalent to the statement that for any positive ratio of 
the strain r a t e s  Exx/Eyy, the growth rate is maximized for a 
non-zero aspect ratio Lx/Ly = m/l. This identifies a par- 
ticular fold aspect ratio with a particular strain-rate 
ratio. This plausible result, however, is not correct. The 
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form to be maximized (Johnson & Page 1976, equation 
26f) is identical to (31) here. The error  arises in the 
expansion of this quantity, which is given on the right- 
hand side of Johnson's & Page's equation (26f). Since 
the result in question can be derived from the published 
form of their equation (26f), the error  is not a typo- 
graphical error.  The correct expression on the fight- 
hand side of their (26f) should have as its denominator  
[(L~/Ly) 2 + 1] 2. 

For a basic state of plane strain, ~yy = 0, and gzz = ~xx, 
(31) reduces to 

E = [1 + (m//)2] -1 + 1. (32) 

This is maximized for the cylindrical fold form with axis 
normal to the direction of shortening, m/l = 0, for which 
E = 2, and decreases monotonically but slowly as m/l 
increases. Remarkably,  it falls to only E = 1 for the 
extreme case m/l ~ oo, which corresponds to a cylindri- 
cal fold form whose axis lies parallel to the direction of 
shortening. In comparing these two cases, recall that if 
the amount  of amplification for some increment of 
shortening is 100 for E = 2, that for E = 1 will be only 
10. When the axis is parallel to the shortening direction 
in plane strain, there is vertical extension, but no short- 
ening normal to the fold axis. 

Watkinson (1975) has conducted experiments to pro- 
duce folding in the case ~z~ = 0, whence ~yy = -gxx. In 
this case, 

E = [(/2/22) - (m2/22)]. (33) 

The maximum rate of amplification occurs for the cylin- 
drical fold form with axis normal to the shortening 
direction, for which E = 1. A fold form with aspect ratio 
LJLy = 1 is not amplified, except kinematically, and 
fold forms with Lx/Ly < 1 decay. 

For the special basic s t a t e  ~yy = ~xx, 

E = (l 2 + m2)/;t a + 2 = 3, (34) 

and the rate of amplification is the same for all fold 
forms. In particular, the 'egg-carton' form, Ly = Lx, is 
not preferentially amplified. Since E has been chosen to 
scale with I x l, the addition of shortening parallel to y 
necessarily augments the strength of instability, as we 
have already seen for the cylindrical fold form. 

The general relationship can be shown by contours of 
E in the space of L~/Ly and ~yy/~xx (Fig. 5). To summar- 
ize these results, whatever the ratio gyy/~x, the growth 
rate is maximized for a cylindrical fold form with axis 
normal to the direction of maximum shortening. The 
differential in growth rate with varying m/l is maximized 
in a basic state of plane strain. It disappears for the basic 
s t a t e  ~yy = ~xx ( O, in which all fold forms grow at an 
equal rate. For ~yy > 0, fold forms with their long axis in 
the direction of shortening, LilLy < 1, begin to decay, 
first at very large aspect ratio, and then at smaller ratio as 
~yy increases. 

The chief factors influencing the aspect ratio of three- 
dimensional folds formed at low limb-dip are therefore: 
(i) the general preference for cylindrical fold forms; (ii) 
the variation in this effect with the in-plane strain-rates; 

and (iii) the nature of the initial perturbation. A selecti- 
vity for fold form is thus present,  in contrast to the case 
with density instability (Biot 1966) in which all forms 
have the same growth rate, but the selectivity does not 
favor a finite aspect LxlLy at each value of ~yy/~xx" 
Further insight into the development of three- 
dimensional fold form will likely require the simulation 
of fold arrays, as in the case of cylindrical fold arrays 
(Fletcher & Sherwin 1977). 

Treatment of arbitrary three-dimensional fold forms 

The symmetry restriction imposed in carrying out the 
formal analysis is not,  in fact, a restriction at all, and the 
present results apply to the amplification of any three- 
dimensional fold form. 

Any three-dimensional surface form can be rep- 
resented by the stimmation of expressions of the form 

~(x,y) = A cos (Ix) cos (my) + B cos (Ix) sin (my) 

+ C sin (Ix) cos (my) + D sin (Ix) sin (my), 
(35) 

where A, B, C and D are arbitrary amplitudes. The 
summation is over all appropriate wavenumbers l and m. 
More precisely, a surface form within a finite rectangular 
region of the x,y plane can be represented by a double 
sum over an infinite but discrete set of wavenumbers. 
For an unbounded region, the summation is replaced by 
a Fourier integral. 

Given the explicit solution for the first term, A cos (Ix) 
cos (my), that for the other terms are obtained by noting 
that the first term can be converted to any of the others 
merely by a shift in co-ordinate origin of +~/2 in the 
arguments Ix or my. At the same time, the forms 
described by each of the four terms in (35) evolve 
independently, since the products are orthogonal on the 
x,y plane. The growth rates for each depend solely on 
the parameters 22 = 12 + m 2 and re~l, and, hence, are 
identical. 

These remarks are sufficient to indicate the full gener- 
ality of the present solution, for the boundary-value 

LdLy 

0 1 2 

-1 

Fig. 5. Contours of the function E(LxlLy, ~yyl~xx) which determines 
the rate of fold amplification as a function of fold aspect ratio Lx/Ly 

and strain-rate ratio ~yr/~x~ at a given wavenumber 4. 
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problem considered here. However ,  discussion of sim- 
ple cases will serve to illustrate some practical appli- 
cations. 

The notion of a 'fold wavelength' is common in the 
literature. However ,  folds and similar structures do not 
have wavelengths in any rigorous sense because they are 
not periodic structures: they do not possess long-range 
order. They do have a characteristic spacing. In the case 
of approximately cylindrical single-layer folds, which 
are the only structure to be studied in any detail (Sher- 
win & Chapple 1968, Hudleston & Hoist 1984), sections 
cut normal to the fold axis show a regularity that is 
usefully represented on a histogram of crest-to-crest fold 
arc lengths normalized by the layer thickness, L/H.  
Histograms of L / H  generally show a prominent  maxi- 
mum, but there is generally substantial dispersion about 
the mean value (Hudleston & Hoist 1984). The regu- 
larity resulting from the folding process is a short-range 
order,  so that the average E will be a good estimate of 
the next nearest fold crest, but NL will not be a good 
estimate of the Nth fold crest away from a given crest. 
Simulations (Fletcher & Sherwin 1977) show that Ld /H  
is a good approximation to L/H.  

It is still useful to approximate the local configuration 
by the sum of one or two periodic components,  but one 
expects that this approximation will rapidly lose register 
with the actual layer surface shape with increasing dis- 
tance from the local structure to which this approximat- 
ing form is fitted. The qualitative comparison between 
the low limb-dip folds in Fig. l (b)  and the periodic form 
in Fig. 2 is an example of this. We therefore consider two 
simple representations of local fold form where the 
forms are oblique to the principal axes of the basic-state 
flow: a cylindrical form, and a doubly-plunging form. 

Let axes x' and y '  make angles of/3 with the x and y 
axes, and consider the fold form 

~(x' ,y ')  = A cos ( l 'x ' )  cos (m 'y ' ) .  (36) 

Substituting 

x' = x cos/3 + y sin/3 (37) 

y '  = - x  sin/3 + y cos fl 

into (36) and expanding, we obtain 

~(x,y) -- A/2[cos (llx) cos (rely) - sin (ll x) sin (rely)] 

+ A/2[cos (12x) cos (mzy) 

- sin (/2x) sin (m2y)], (38) 

where 

11 = 1' COS fl -- m'  sin/3, ml = m' cos/3 + l' sin fl 

l 2 = 1' cos fl + m' sin fl, m2 = m' cos/3 -- 1' sin/3. 

Consider first the special case m' = 0, which corre- 
sponds to a cylindrical, sinusoidal form whose axis 
makes an angle of/3 with the y axis. In this case, lx =/2 = l 
= l' cos fl, and rn 2 = - m l  = m = l' sin fl, and (38) 
reduces to 

The growth rates of the two parts of the cylindrical 
perturbation thus are the same, since both have the same 
values of 22 = l 2 + m 2 and m/l = tan/3. This proves that 
the cylindrical perturbation will retain its form as defor- 
mation continues. Of course, just as in the case of the 
fully two-dimensional situation, the wavenumbers, and 
hence both the wavelength L~ and the angle of the fold 
axis to the y axis,/3, change with continued deformation. 
Their  rates of change are determined from the relations 

dl/dt = -lg,:x (40) 

dm/dt  = -m~yy ,  

and the above definitions to be 

)~cl2/dt = -(12gxx + m2~yy) 

and 

d(tan fl)/dt = (exx - eyy) tan/3. (41) 

These relations would be used to evaluate the cumulat- 
ive amplification of the perturbation if its growth rate 
were slow relative to the mean rate of deformation, as in 
the two-dimensional models of Sherwin & Chapple 
(1968), Fletcher (1974), or Hudleston & Hoist (1984). 

It can be seen from the above that the fold hinge 
behaves like a passive marker  in the basic state of flow. 
We can ask the further distinct question as to whether 
particles initially on the hinge remain there as the 
deformation continues. The effect of the basic state of 
flow considered here is to move all material lines in 
either the layer or the medium as 'passive markers'.  
Consequently, if particles initially on the fold hinge 
move off it, this must arise from the perturbing flow. To 
answer the question, we first determine the total per- 
turbing velocity for the fold shape (39), and then resolve 
its components along the axes x ' ,  y ' ,  z' = z. 

Notice that the second part of the form (39) is ob- 
tained from the first by a phase shift of :r/2 in the x 
direction, and a phase shift of -at/2 in the y direction. To 
obtain the form of the velocity field corresponding to it, 
we therefore make the following replacements: cos (Ix) 
by cos (Ix + at/2) = - s i n  (Ix), cos (my)  by cos (my  - :r/2) 
= sin (my) ,  and sin (Ix) by cos (Ix), sin (my)  by - c o s  
(my) .  Using these, we obtain the additional parts of the 
perturbing flow from (18a) and (22a), and after further 
condensing the trigonometric expressions, we obtain 

(t = [ - ( l / ,~ )Vp  + mVt]  sin (Ix + my)  

f~ = [ - ( m / 2 )  Vp - lVt] sin (Ix + my)  (42) 

= Wp cos (Ix + my) ,  

where Vp and Vt are the z-dependent terms in the 
poloidal and toroidal flows, respectively. Substituting 
(42) into the transformation relations 

u' = u cos/3 + v sin/3 

v' = - u  sin/3 + v cos/3 (43) 
W t ~ W ,  

~(x,y) = A[cos (Ix) cos (my)  - sin (Ix) sin (my)]. (39) and using l 'x '  = lx + my ,  we find 
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fi' = - V  o sin (l'x') 
P' = - l ' V  t sin (l' x ' )  (44) 

~ '  = wp cos (rx'). 

Here  l' can be replaced by the wavenumber ;t. The 
relation (44) shows that the perturbing flow for an 
obliquely-oriented cylindrical perturbation,  referred to 
the instantaneous position of axes x ' ,y '  and z' ,  where y '  
is parallel to the perturbation axis, is the sum of a plane 
flow fi' = fi ' (x ' ,z ') ,  ~' = 0, ~ '  = ~ ' (x ' , z ' )  and an anti- 
plane flow P' = f, '(x',z') fi' = ~ '  = 0. The former is 
purely poloidal, and the latter is purely toroidal. In 
particular, since fi' is zero at x' = 0, particles initially on 
the fold hinge remain there. (It is perhaps likely that this 
result could be obtained more simply from an argument 
based purely on symmetry.)  The form of the perturbing 
flow (44), together with the equivalent expressions in 
the stress components  would be that most convenient for 
computing principal directions of stress or strain-rate. 

From (32) we can estimate the growth rate of an 
obliquely-inclined cylindrical perturbation in plane 
strain relative to one oriented normal to the direction of 
shortening, as in the Appalachian field example. This 
estimate will be valid if the effect of gravity in suppress- 
ing fold growth is not significant, and if the mechanical 
layers are adequately approximated as linear viscous 
fluids, even though the layer configurations are differ- 
ent. For  the obliquely-oriented cylindrical form whose 
axis is inclined at a counter-clockwise angle to the y axis, 
fl, l = 2 cos fl and m = 2 sin ft. Then,  from (32), 
E = (1 + tanZfl) -~ + 1. For f l  = - 3 0  ° , E = 1.75. If the 
fold form with axis parallel to y is amplified by 100, the 
inclined form will be amplified by a factor (100) 175/2 = 
56; such a structure will persist during the subsequent 
deformation. 

Now consider the more general case of the obliquely- 
oriented, non-cylindrical form (38). When m' ~ 0, we 
have 11 :~ 12 and ml :~ m2. Therefore ,  while l 2 + m 2 = 12 a 
+ m 2 = 22, we have ml/ll ~ m2/12. Consequently, with 
further deformation, the form (38) is not preserved, but 
evolves into 

~(x,y) = Al[cos (llx) cos (mly) - sin (llx) sin (mly)] 

= A2[cos (/2x) cos (m2y) - sin (12x) sin (m2y)], 
(45) 

where A 1 and A2 both have the initial amplitudes A/2, 
but grow at different rates determined by the values of 
mi/l 1 and m2/12. Evidently, this form can be represented 
by the sum of two cylindrical forms with axes located at 
angles of fll and fie from the y axis, where 

tan fll = ml/ll 
= (l' sin fl + m' cos fl)/(l' cos fl - rn' sin fl) 

tan f12 = m2/12 (46) 

= (l' sin fl - m' cos fl)/(l' cos fl + m' sin fl). 

The evolution of the single cylindrical form has already 
been discussed. It suffices to add two such forms to 
follow the evolution of the shape (45). 

CONCLUSIONS 

(1) A general solution for the three-dimensional fold- 
ing of an isotropic, linear viscous layer has been ob- 
tained without the necessity of introducing thin-plate 
approximations. A toroidal flow, with non-vanishing 
vorticity component  normal to the layer, is required to 
satisfy both shear traction matching conditions. This 
flow is not coupled with the poloidal flow, which solely 
determines the rate of fold growth. 

(2) The separation constant 2 for the most rapidly 
growing component  is the same as that obtained for the 
cylindrical perturbation in a basic state of plane flow. A 
cylindrical fold form with axis normal to the maximum 
direction of shortening in the plane of the layer grows 
most rapidly for all ratios of the in-plane strain rates, 
Eyy[Exx < 1 as opposed to one with a finite fold aspect 
ratio, Lx/Ly. When eyy/gx,: < 0, components with the 
same 2 but different m/l all grow at the same relative 
rate. 

(3) The three-dimensional fold forms shown by the 
structure contour map of a portion of the central Appa- 
lachian Plateau province are well-approximated by the 
sum of two obliquely-oriented cylindrical forms. The 
rate of amplification of this structure can be estimated 
from the present treatment,  and the 'earlier' cylindrical 
components will continue to grow at a substantial rate. 
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